Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Front Public Health ; 11: 1129267, 2023.
Article in English | MEDLINE | ID: covidwho-2318255

ABSTRACT

This study aims to assess the situation of Italian hotspots for migrant reception during the COVID-19 pandemic, and specifically analyzing the situation of two hotspots located in the Sicily Region (Pozzallo harbor and Lampedusa Island), to identify critical issues. At the same time, we hypothesize solutions to guarantee the respect of human rights and suggest an operational protocol to be applied in similar situations, considering that the migration phenomenon is increasing and involving new geographical areas. Based on data obtained through the site inspections, the facilities of Pozzallo and Lampedusa exceeded their capacity to adequately contain the spread of the SARS-CoV-2 infection. Considering these findings, we suggest a practical workflow summarizing the main actions that should be applied to contain COVID-19, or other infectious disease, spreading in hotspots for migrants. The impact of the COVID-19 pandemic on migrants has received limited attention, although the migration phenomenon did not slow down during the pandemic period. Regarding the risk of spreading infectious diseases such as COVID-19, it is necessary that those countries who are most exposed to migration flows, such as Italy, plan dedicated strategies to minimize the possibility of transmission of SARS-CoV-2, using adequate protocols to monitor the possible insurgence of variants of interest (VOIs) or variants of concern (VOCs). Finally, it is important to state that these suggestions could be applied in any future pandemics.


Subject(s)
COVID-19 , Transients and Migrants , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Pandemics/prevention & control , Mediterranean Sea , Italy/epidemiology
2.
Environ Res ; 216(Pt 1): 114089, 2023 01 01.
Article in English | MEDLINE | ID: covidwho-1996150

ABSTRACT

Several studies have proposed that environmental factors influencing human wellbeing, such as chronic exposures to high levels of particulate matter, could indirectly or even directly affect also the severity of COVID-19 disease in case of infection by novel coronavirus SARS-COV2. This study has investigated the association between COVID-19 infections, hospitalizations or deaths and the extension of public green areas (km2 per 100,000 based on OECD data of 2014), an indicator that has been chosen as independent endpoint variable to test the research hypothesis in 10 Italian and 8 Spanish Provinces with more than 500.000 inhabitants, including capitals (Rome and Madrid) and bigger cities (Bologna, Catania, Florence, Genoa, Milan, Naples, Palermo, Turin and Venice for Italy; Barcelona, Valencia, Seville, Zaragoza, Malaga, Las Palmas and Bilbao for Spain). Two different methodologies have been applied: a bottom-up approach was applied to Spanish institutional data concerning contagions/hospitalizations/deaths and the extent of public green areas for each responder to an official questionnaire in the frame of a nationwide survey (with detailed data granularity per province) containing specific georeferenced information; a top-down approach was used for Italy, starting from the official figures of contagions/hospitalizations/deaths of each province and linking them to the OECD statistics about the extension of public green areas in the different areas. Linear and generalized models were used for statistical analyses including also PM2.5 in a multivariate approach (with annual average concentrations from official air quality monitoring stations) and were able to adjust for the different number inhabitants living in each province, in order to take into account the difference in contagion dynamics related to the different density of population. The results obtained for Spain are consistent with those observed for Italy, as for both countries, it has clearly emerged a statistically significant association between COVID-19 clinical features (contagions, hospitalizations, and deaths) and the extension of public green areas, as well as the annual average concentrations of PM2.5 (with this latter variable loosing statistical significance in some province). Therefore, the extension of public green areas and air pollution seem to have a high correlation with COVID-19 severity.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , COVID-19/epidemiology , Spain/epidemiology , SARS-CoV-2 , Retrospective Studies , Air Pollutants/analysis , RNA, Viral , Air Pollution/analysis , Particulate Matter/analysis , Italy/epidemiology
3.
Environ Res ; 211: 113038, 2022 08.
Article in English | MEDLINE | ID: covidwho-1906998

ABSTRACT

There are important questions surrounding the potential contribution of outdoor and indoor air quality in the transmission of SARS-CoV-2 and perpetuation of COVID-19 epidemic waves. Environmental health may be a critical component of COVID-19 prevention. The public health community and health agencies should consider the evolving evidence in their recommendations and statements, and work to issue occupational guidelines. Evidence coming from the current epidemiological and experimental research is expected to add knowledge about virus diffusion, COVID-19 severity in most polluted areas, inter-personal distance requirements and need for wearing face masks in indoor or outdoor environments. The COVID-19 pandemic has highlighted the need for maintaining particulate matter concentrations at low levels for multiple health-related reasons, which may also include the spread of SARS-CoV-2. Indoor environments represent even a more crucial challenge to cope with, as it is easier for the SARS-COV2 to spread, remain vital and infect other subjects in closed spaces in the presence of already infected asymptomatic or mildly symptomatic people. The potential merits of preventive measures, such as CO2 monitoring associated with natural or controlled mechanical ventilation and air purification, for schools, indoor public places (restaurants, offices, hotels, museums, theatres/cinemas etc.) and transportations need to be carefully considered. Hospital settings and nursing/retirement homes as well as emergency rooms, infectious diseases divisions and ambulances represent higher risk indoor environments and may require additional monitoring and specific decontamination strategies based on mechanical ventilation or air purification.


Subject(s)
Air Pollution, Indoor , COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Pandemics/prevention & control , Particulate Matter , RNA, Viral , SARS-CoV-2
5.
Int J Environ Res Public Health ; 19(9)2022 04 26.
Article in English | MEDLINE | ID: covidwho-1809909

ABSTRACT

(1) Background: Pelargonium sidoides extracts and lactoferrin are two important natural, anti-inflammatory, and antiviral agents, which can interfere with the early stages of SARS-CoV-2 infection. Molecular docking and molecular dynamics simulation approaches have been applied to check for the occurrence of interactions of the Pelargonium sidoides compounds with lactoferrin and with SARS-CoV-2 components. (2) Methods: Computational methods have been applied to confirm the hypothesis of a direct interaction between PEL compounds and the lactoferrin protein and between Pelargonium sidoides compounds and SARS-CoV-2 Spike, 3CLPro, RdRp proteins, and membrane. Selected high-score complexes were structurally investigated through classical molecular dynamics simulation, while the interaction energies were evaluated using the molecular mechanics energies combined with generalized Born and surface area continuum solvation method. (3) Results: Computational analyses suggested that Pelargonium sidoides extracts can interact with lactoferrin without altering its structural and dynamical properties. Furthermore, Pelargonium sidoides compounds should have the ability to interfere with the Spike glycoprotein, the 3CLPro, and the lipid membrane, probably affecting the functional properties of the proteins inserted in the double layer. (4) Conclusion: Our findings suggest that Pelargonium sidoides may interfere with the mechanism of infection of SARS-CoV-2, especially in the early stages.


Subject(s)
COVID-19 , Pelargonium , Humans , Lactoferrin , Molecular Docking Simulation , Pelargonium/chemistry , Plant Extracts/chemistry , SARS-CoV-2
6.
Atmosphere ; 13(2):340, 2022.
Article in English | MDPI | ID: covidwho-1704303

ABSTRACT

The airborne route of transmission of SARS-CoV-2 was confirmed by the World Health Organization in April 2021. There is an urge to establish standardized protocols for assessing the concentration of SARS-CoV-2 RNA in air samples to support risk assessment, especially in indoor environments. Debates on the airborne transmission route of SARS-CoV-2 have been complicated because, among the studies testing the presence of the virus in the air, the percentage of positive samples has often been very low. In the present study, we report preliminary results on a study for the evaluation of parameters that can influence SARS-CoV-2 RNA recovery from quartz fiber filters spotted either by standard single-stranded SARS-CoV-2 RNA or by inactivated SARS-CoV-2 virions. The analytes were spiked on filters and underwent an active or passive sampling;then, they were preserved at −80 °C for different numbers of days (0 to 54) before extraction and analysis. We found a mean recovery of 2.43%, except for the sample not preserved (0 days) that showed a recovery of 13.51%. We found a relationship between the number of days and the recovery percentage. The results presented show a possible issue that relates to the quartz matrix and SARS-CoV-2 RNA recovery. The results are in accordance with the already published studies that described similar methods for SARS-CoV-2 RNA field sampling and that reported non-detectable concentrations of RNA. These outcomes could be false negatives due to sample preservation conditions. Thus, until further investigation, we suggest, as possible alternatives, to keep the filters: (i) in a sealed container for preservation at 4 °C;and (ii) in a viral transport medium for preservation at a temperature below 0 °C.

7.
PLoS One ; 17(2): e0262911, 2022.
Article in English | MEDLINE | ID: covidwho-1700320

ABSTRACT

BACKGROUND: COVID-19 pandemic resulted in about 165 million infections and 3.4 million deaths all over the world across 15 months. The most severe clinical presentation of COVID-19 diseases is interstitial pneumonia. METHODS: In this paper we describe clinical outcomes based on radiological features as well as the pattern of haematochemical parameters and IgG/IgM antibodies in 75 patients hospitalized due to COVID-related interstitial pneumonia not requiring intensive care assistance. Each patient underwent routine laboratory tests, including inflammatory markers and coagulation profile at baseline. Computed Tomography (CT) was performed at baseline and after 3 months to assess the persistence of radiological sequelae. A Generalized Linear Model (GLM) was used to test for each patient the association between individual haematochemical parameters at the time of hospital admission and the subsequent radiological features after three months. The presence of IgG antibodies was quantitatively determined in 70 patients at the time of hospital admission and after 3 months. A subgroup of 49 and 21 patients underwent additional dosage of IgG after 6 and 12 months, respectively. IgM serological antibodies were available for 17 patients at baseline and 61 at T3, with additional follow-up for 51 and 20 subjects after 6 and 12 months, respectively. RESULTS: Only 28 out of 75 patients discharged from the hospital were totally healed after 3 months, while 47 patients (62.7%) still presented radiological sequelae. According to the GLM model, specific haematochemical baseline parameters-such as IL-6, GPT, platelets and eosinophil count-showed a statistically significant association with the presence of radiological sequelae at month 3 highlighting an OR = 0.5, thus meaning that subjects completely healed after 3 months presented half levels of IL-6 at baseline compared to patients with sequelae. In general, IgG serum levels were always higher than IgM at the time of hospitalization (75% at T0; n = 12 out of 16 patients with data available in both visits), after 3 months (72.1%; n = 44 out of 61 pts.), after 6 months (56.8%; 25 out of 44 pts.), and one year after hospitalization (60%; 12 out of 20 pts.). Overall, IgG and IgM serum levels presented a statistically significant decreasing trend from the baseline to month 3, 6 and 12. One patient presented an increase in IgM between baseline and month 3 but negative PCR test for SARS-COV2 on throat swab. CONCLUSIONS: As supported by our findings on 75 patients, COVID-related interstitial pneumonia triggers early IgG levels (higher than IgM) that gradually decrease over 12 months. Mid-term sequelae are still detectable at lung Computed Tomography after 3 months from the hospital admission. Occasionally, it is possible to observe increase of IgM levels in presence of low concentrations of IgG and negative PCR ELISA tests for SARS-COV2 RNA. Baseline levels of IL-6 could be proposed as predictor of radiological mid/long-term sequelae after COVID-related interstitial pneumonia.


Subject(s)
Antibodies, Viral/blood , COVID-19 Drug Treatment , COVID-19 , Hospitalization , Immunoglobulin G/blood , Immunoglobulin M/blood , Interleukin-6/blood , SARS-CoV-2/metabolism , Tomography, X-Ray Computed , Adult , COVID-19/blood , COVID-19/therapy , Female , Follow-Up Studies , Humans , Male
9.
Environ Res ; 204(Pt D): 112348, 2022 03.
Article in English | MEDLINE | ID: covidwho-1509773

ABSTRACT

Since the start of the COVID-19 pandemic many studies investigated the correlation between climate variables such as air quality, humidity and temperature and the lethality of COVID-19 around the world. In this work we investigate the use of climate variables, as additional features to train a data-driven multivariate forecast model to predict the short-term expected number of COVID-19 deaths in Brazilian states and major cities. The main idea is that by adding these climate features as inputs to the training of data-driven models, the predictive performance improves when compared to equivalent single input models. We use a Stacked LSTM as the network architecture for both the multivariate and univariate model. We compare both approaches by training forecast models for the COVID-19 deaths time series of the city of São Paulo. In addition, we present a previous analysis based on grouping K-means on AQI curves. The results produced will allow achieving the application of transfer learning, once a locality is eventually added to the task, regressing out using a model based on the cluster of similarities in the AQI curve. The experiments show that the best multivariate model is more skilled than the best standard data-driven univariate model that we could find, using as evaluation metrics the average fitting error, average forecast error, and the profile of the accumulated deaths for the forecast. These results show that by adding more useful features as input to a multivariate approach could further improve the quality of the prediction models.


Subject(s)
Air Pollution , COVID-19 , Air Pollution/analysis , Brazil , Humans , Humidity , Pandemics , SARS-CoV-2 , Temperature
10.
Int J Environ Res Public Health ; 18(21)2021 Oct 24.
Article in English | MEDLINE | ID: covidwho-1480770

ABSTRACT

Even several months after the start of a massive vaccination campaign against COVID-19, mortality and hospital admission are still high in many countries. Monoclonal antibodies against SARS-CoV-2 are the ideal complement to vaccination in infected subjects who are at high risk for progression to severe disease. Based on data of the Italian Ministry of Health, in the period April-August 2021, monoclonal antibodies were prescribed to 6322 patients. In the same period, 70,022 patients over 70 years old became infected with SARS-CoV-2. Even considering that all monoclonal antibodies were prescribed to this category of patients, we calculated that only 9% of these subjects received the treatment. Moreover, using efficacy data provided by clinal trials, we estimated the potential benefit in terms of reduction of hospital admissions and deaths. Considering utilisation of monoclonal antibodies in half infected patients over 70 years, we estimated that hospital admissions and deaths might have been reduced by 7666 and 3507, respectively. Finally, we calculated the economic benefit of monoclonal use. In the same scenario (50% use of monoclonal antibodies to patients over 70), we estimated potential savings of USD 117,410,105. In conclusion, monoclonal antibodies were used in a small proportion of patients over 70 in Italy. A more extensive use might have resulted in a marked decrease in hospital admissions, deaths and in conspicuous saving for the health system.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Monoclonal/therapeutic use , Hospitalization , Humans , Vaccination
11.
Int J Environ Res Public Health ; 18(20)2021 10 19.
Article in English | MEDLINE | ID: covidwho-1477947

ABSTRACT

Lactoferrin (Lf), a multifunctional cationic glycoprotein synthesized by exocrine glands and neutrophils, possesses an in vitro antiviral activity against SARS-CoV-2. Thus, we conducted an in vivo preliminary study to investigate the antiviral effect of oral and intranasal liposomal bovine Lf (bLf) in asymptomatic and mild-to-moderate COVID-19 patients. From April 2020 to June 2020, a total of 92 mild-to-moderate (67/92) and asymptomatic (25/92) COVID-19 patients were recruited and divided into three groups. Thirty-two patients (14 hospitalized and 18 in home-based isolation) received only oral and intranasal liposomal bLf; 32 hospitalized patients were treated only with standard of care (SOC) treatment; and 28, in home-based isolation, did not take any medication. Furthermore, 32 COVID-19 negative, untreated, healthy subjects were added for ancillary analysis. Liposomal bLf-treated COVID-19 patients obtained an earlier and significant (p < 0.0001) SARS-CoV-2 RNA negative conversion compared to the SOC-treated and untreated COVID-19 patients (14.25 vs. 27.13 vs. 32.61 days, respectively). Liposomal bLf-treated COVID-19 patients showed fast clinical symptoms recovery compared to the SOC-treated COVID-19 patients. In bLf-treated patients, a significant decrease in serum ferritin, IL-6, and D-dimers levels was observed. No adverse events were reported. These observations led us to speculate a potential role of bLf in the management of mild-to-moderate and asymptomatic COVID-19 patients.


Subject(s)
COVID-19 , Lactoferrin , Animals , Antiviral Agents/therapeutic use , Cattle , Humans , RNA, Viral , SARS-CoV-2
12.
Front Pharmacol ; 12: 666600, 2021.
Article in English | MEDLINE | ID: covidwho-1295678

ABSTRACT

Lactoferrin (Lf) is a cationic glycoprotein synthetized by exocrine glands and is present in all human secretions. It is also secreted by neutrophils in infection and inflammation sites. This glycoprotein possesses antimicrobial activity due to its capability to chelate two ferric ions per molecule, as well as to interact with bacterial and viral anionic surface components. The cationic features of Lf bind to cells, protecting the host from bacterial and viral injuries. Its anti-inflammatory activity is mediated by the ability to enter inside the nucleus of host cells, thus inhibiting the synthesis of proinflammatory cytokine genes. In particular, Lf down-regulates the synthesis of IL-6, which is involved in iron homeostasis disorders and leads to intracellular iron overload, favoring viral replication and infection. The well-known antiviral activity of Lf has been demonstrated against DNA, RNA, and enveloped and naked viruses and, therefore, Lf could be efficient in counteracting also SARS-CoV-2 infection. For this purpose, we performed in vitro assays, proving that Lf exerts an antiviral activity against SARS-COV-2 through direct attachment to both SARS-CoV-2 and cell surface components. This activity varied according to concentration (100/500 µg/ml), multiplicity of infection (0.1/0.01), and cell type (Vero E6/Caco-2 cells). Interestingly, the in silico results strongly supported the hypothesis of a direct recognition between Lf and the spike S glycoprotein, which can thus hinder viral entry into the cells. These in vitro observations led us to speculate a potential supplementary role of Lf in the management of COVID-19 patients.

14.
Int J Environ Res Public Health ; 17(21)2020 11 01.
Article in English | MEDLINE | ID: covidwho-902535

ABSTRACT

Coronavirus (SARS-CoV-2) emerged in China in December 2019 and rapidly caused a global health pandemic. Current evidence seems to suggest a possible link with ecosystem disequilibrium and even air pollution. The primary manifestations affect respiratory and circulatory systems, but neurological features are also being reported through case reports and case series. We summarize neurological symptoms and complications associated with COVID-19. We have searched for original articles published in PubMed/Medline, PubMed Central and Google Scholar using the following keywords: "COVID-19", "Coronavirus", "pandemic", "SARS-COV-2", "neurology", "neurological", "complications" and "manifestations". We found around 1000 publications addressing the issue of neurological conditions associated with COVID-19 infection. Amongst those, headache and dizziness are the most common reported symptoms followed by encephalopathy and delirium, while the most frequent complications are cerebrovascular accidents, Guillain-Barré syndrome, acute transverse myelitis, and acute encephalitis. Specific symptoms affecting the peripheral nervous system such as hyposmia and dysgeusia are the most common manifestations recorded in the selected studies. Interestingly, it was noted that these kinds of neurological symptoms might precede the typical features, such as fever and cough, in COVID patients. Neurological symptoms and complications associated with COVID-19 should be considered as a part of the clinical features of this novel global pandemic.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/physiopathology , Coronavirus Infections/psychology , Dizziness/etiology , Dysgeusia/etiology , Headache/etiology , Nervous System Diseases/physiopathology , Pandemics , Pneumonia, Viral/physiopathology , Pneumonia, Viral/psychology , COVID-19 , China/epidemiology , Comorbidity , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Humans , Nervous System Diseases/diagnosis , Nervous System Diseases/epidemiology , Nervous System Diseases/psychology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , SARS-CoV-2
15.
Environ Res ; 193: 110343, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-861779

ABSTRACT

BACKGROUND: About 15 million people worldwide were affected by the Sars-Cov-2 infection, which already caused 600,000 deaths. This virus is mainly transmitted through exhalations from the airways of infected persons, so that Heating, Ventilation and Air Conditioning (HVAC) systems might play a role in increasing or reducing the spreading of the infection in indoor environments. METHODS: We modeled the role of HVAC systems in the diffusion of the contagion through Computational Fluid Dynamics (CFD) simulations of cough at the "Bambino Gesù" Vatican State Children's Hospital. Both waiting and hospital rooms were modeled as indoor scenarios. A specific Infection-Index (η) parameter was used to estimate the amount of contaminated air inhaled by each person present in the simulated indoor scenarios. The potential role of exhaust air ventilation systems placed above the coughing patient's mouth was also assessed. RESULTS: Our CFD-based simulations of the waiting room show that HVAC air-flow remarkably enhances infected droplets diffusion in the whole indoor environment within 25 s from the cough event, despite the observed dilution of saliva particles containing the virus. At the same time also their number is reduced due to removal through the HVAC system or deposition on the surfaces. The proper use of Local Exhaust Ventilation systems (LEV) simulated in the hospital room was associated to a complete reduction of infected droplets spreading from the patient's mouth in the first 0.5 s following the cough event. In the hospital room, the use of LEV system completely reduced the η index computed for the patient hospitalized at the bed next to the spreader, with a decreased possibility of contagion. CONCLUSIONS: CFD-based simulations for indoor environment can be useful to optimize air conditioning flow and to predict the contagion risk both in hospitals/ambulatories and in other public/private settings.


Subject(s)
Air Pollution, Indoor , COVID-19 , Air Conditioning , Child , Hospitals , Humans , Hydrodynamics , SARS-CoV-2 , Ventilation
16.
Health Promot Perspect ; 10(3): 169-174, 2020.
Article in English | MEDLINE | ID: covidwho-830181

ABSTRACT

The issue of indoor air quality (IAQ) concerns 64 million students across Europe, but it is still a neglected topic, although it impacts both their health and learning outcomes. Classroommicroclimate is the first key factor determining a healthy or unhealthy school environment, and it is influenced by ventilation, temperature and humidity rate. Classrooms are usually crowded, overheated and poorly ventilated, thus resulting in possible increases of carbon dioxide (CO2), that can cause several problems when its concentrations exceed the value of 0.15 percentage volume of CO2 (1500 ppm) or even at lower levels (1000 ppm). CO2 can also arise from outside the school, being widely produced by the combustion of fossils or road traffic. Anthropogenic activities are responsible for the emission of nitrogen dioxide (NO2) and polycyclic aromatic hydrocarbons(PAH) too, which represent other possible external contaminants potentially impairing IAQ. Furtherdangerous exposures for students' health are those related to natural emission of gas Radon, which typically accumulates in poorly ventilated classrooms, and volatile organic compounds (VOCs, released by building materials, paints, furnishings, detergents), while chemicals substances (i.e.cyanoacrylate, lead, cadmium, nickel) might be contained in school materials. Finally, particulate matter (PM2.5 and PM10) originating from road traffic, domestic heating or industrial activities represent additional possible contaminants impacting schools' air quality. Poor IAQ might result in mild adverse events (i.e. headaches, nausea etc.) or cause respiratory problems. More frequently, IAQ affects students' attention and their school performances, as widely documented by many studies. Standardized tests administered to pupils exposed to poor IAQ (to assess reading and mathematical abilities) systematically result in worse outcomes compared to students staying in healthy classroom environments. In this paper, we present recommendations of UNESCO Chair on Health Education and Sustainable Development and Italian Society of Environmental Medicine(SIMA) to ensure an optimal IAQ at school, including some post-COVID-19 issues.

17.
BMJ Open ; 10(9): e039338, 2020 09 24.
Article in English | MEDLINE | ID: covidwho-797426

ABSTRACT

OBJECTIVES: A number of studies have shown that the airborne transmission route could spread some viruses over a distance of 2 meters from an infected person. An epidemic model based only on respiratory droplets and close contact could not fully explain the regional differences in the spread of COVID-19 in Italy. On March 16th 2020, we presented a position paper proposing a research hypothesis concerning the association between higher mortality rates due to COVID-19 observed in Northern Italy and average concentrations of PM10 exceeding a daily limit of 50 µg/m3. METHODS: To monitor the spreading of COVID-19 in Italy from February 24th to March 13th (the date of the Italian lockdown), official daily data for PM10 levels were collected from all Italian provinces between February 9th and February 29th, taking into account the maximum lag period (14 days) between the infection and diagnosis. In addition to the number of exceedances of the daily limit value of PM10, we also considered population data and daily travelling information for each province. RESULTS: Exceedance of the daily limit value of PM10 appears to be a significant predictor of infection in univariate analyses (p<0.001). Less polluted provinces had a median of 0.03 infections over 1000 residents, while the most polluted provinces showed a median of 0.26 cases. Thirty-nine out of 41 Northern Italian provinces resulted in the category with the highest PM10 levels, while 62 out of 66 Southern provinces presented low PM10 concentrations (p<0.001). In Milan, the average growth rate before the lockdown was significantly higher than in Rome (0.34 vs 0.27 per day, with a doubling time of 2.0 days vs 2.6, respectively), thus suggesting a basic reproductive number R0>6.0, comparable with the highest values estimated for China. CONCLUSION: A significant association has been found between the geographical distribution of daily PM10 exceedances and the initial spreading of COVID-19 in the 110 Italian provinces.


Subject(s)
Air Pollution , Betacoronavirus/isolation & purification , Coronavirus Infections , Disease Transmission, Infectious , Pandemics , Particulate Matter/analysis , Pneumonia, Viral , Air Pollution/analysis , Air Pollution/statistics & numerical data , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Correlation of Data , Disease Transmission, Infectious/prevention & control , Disease Transmission, Infectious/statistics & numerical data , Humans , Italy/epidemiology , Outcome Assessment, Health Care , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Public Health/methods , Public Health/statistics & numerical data , Risk Assessment/methods , SARS-CoV-2
18.
International Journal of Environmental Research and Public Health ; 17(14):5115, 2020.
Article | WHO COVID | ID: covidwho-652226

ABSTRACT

The contribution of this paper is twofold. First, a new data driven approach for predicting the Covid-19 pandemic dynamics is introduced. The second contribution consists in reporting and discussing the results that were obtained with this approach for the Brazilian states, with predictions starting as of 4 May 2020. As a preliminary study, we first used an Long Short Term Memory for Data Training-SAE (LSTM-SAE) network model. Although this first approach led to somewhat disappointing results, it served as a good baseline for testing other ANN types. Subsequently, in order to identify relevant countries and regions to be used for training ANN models, we conduct a clustering of the world"s regions where the pandemic is at an advanced stage. This clustering is based on manually engineered features representing a country"s response to the early spread of the pandemic, and the different clusters obtained are used to select the relevant countries for training the models. The final models retained are Modified Auto-Encoder networks, that are trained on these clusters and learn to predict future data for Brazilian states. These predictions are used to estimate important statistics about the disease, such as peaks and number of confirmed cases. Finally, curve fitting is carried out to find the distribution that best fits the outputs of the MAE, and to refine the estimates of the peaks of the pandemic. Predicted numbers reach a total of more than one million infected Brazilians, distributed among the different states, with São Paulo leading with about 150 thousand confirmed cases predicted. The results indicate that the pandemic is still growing in Brazil, with most states peaks of infection estimated in the second half of May 2020. The estimated end of the pandemics (97% of cases reaching an outcome) spread between June and the end of August 2020, depending on the states.

19.
Environ Res ; 188: 109754, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-436818

ABSTRACT

BACKGROUND: The burden of COVID-19 was extremely severe in Northern Italy, an area characterized by high concentrations of particulate matter (PM), which is known to negatively affect human health. Consistently with evidence already available for other viruses, we initially hypothesized the possibility of SARS-CoV-2 presence on PM, and we performed a first experiment specifically aimed at confirming or excluding this research hyphotesys. METHODS: We have collected 34 PM10 samples in Bergamo area (the epicenter of the Italian COVID-19 epidemic) by using two air samplers over a continuous 3-weeks period. Filters were properly stored and underwent RNA extraction and amplification according to WHO protocols in two parallel blind analyses performed by two different authorized laboratories. Up to three highly specific molecular marker genes (E, N, and RdRP) were used to test the presence of SARS-CoV-2 RNA on particulate matter. RESULTS: The first test showed positive results for gene E in 15 out of 16 samples, simultaneously displaying positivity also for RdRP gene in 4 samples. The second blind test got 5 additional positive results for at least one of the three marker genes. Overall, we tested 34 RNA extractions for the E, N and RdRP genes, reporting 20 positive results for at least one of the three marker genes, with positivity separately confirmed for all the three markers. Control tests to exclude false positivities were successfully accomplished. CONCLUSION: This is the first evidence that SARS-CoV-2 RNA can be present on PM, thus suggesting a possible use as indicator of epidemic recurrence.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Betacoronavirus/genetics , COVID-19 , Humans , Italy , Particulate Matter , RNA, Viral/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL